
[a] On the 26th day that the first account was opened, you started direct deposit of your various paychecks into it. On the 1409th day that that account was opened, you stopped the direct deposit. For how many days were you using that account for direct deposit?

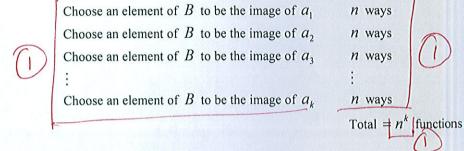
You opened the second account with \$900, but after an argument with customer service one day, you withdrew almost all the funds that day, leaving only $1 \, \text{¢}$ in the account. On the 1278^{th} day that that account was opened, you closed the account. If your balance had been $1 \, \text{¢}$ for 653 days, on which day did you have the argument with customer service?

$$1278 - x + 1 = 653 \qquad x = 626$$

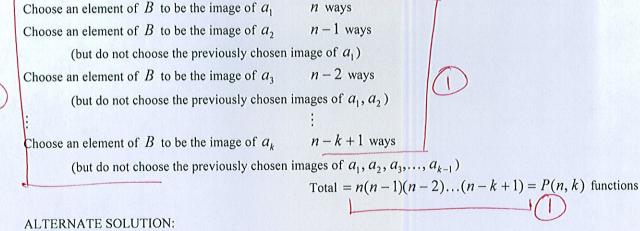
- [a] How many 6 digit positive <u>codes</u> contain 3 digits which are the same as each other, and 3 other digits which are the same as each other but different from the other 3 digits?
 - Choose 2 digits to be used
 - Choose 3 positions for the smaller digit

 Put the larger digit into the other 3 positions

C(10, 2) ways C(6, 3) ways C(6, 3) ways


Total $= C(10, 2) \cdot C(6, 3) = 900$ codes

- [b] How many 6 digit positive <u>integers</u> contain 3 digits which are the same as each other, and 3 other digits which are the same as each other but different from the other 3 digits?
 - Choose 2 other positions for that digit Choose a different digit for the other positions


C(5, 2) ways

Total = $9 \cdot C(5, 2) \cdot 9 = 810$ integers

How many such functions are there? [a]

If $k \le n$, how many such functions are one-to-one? [b]

P(n,k) ways Arrange k elements of B in a line (the element in position i will be image of a_i for i = 1, 2, 3, ..., k)

Vine cards are selected	from a standard	deck of cards to form a hand.	
ville calus are selected	from a standard	deck of cards to form a hand.	

SCORE: / 19 PTS

[a] How many hands contain only diamonds?

C(13, 9)

[b] How many hands contain no diamonds?

C(52-13,9) = C(39,9)

[c] How many hands contain cards from at least 2 different suits?

> Choose a suit Choose 9 cards from that suit

C(13, 9) ways

TOTAL $4 \cdot C(13, 9)$ hands that contain cards from only 1 suit

C(52, 9) – number of hands that contain cards from only 1 suit = $C(52, 9) - 4 \cdot C(13, 9)$ hands

[d] How many hands contain at least 1 diamond and 1 heart (simultaneously)?

Let $A = \{ \text{ hands with no diamonds } \}$

Let $B = \{ \text{ hands with no hearts } \}$

 $A \cap B = \{$ hands with no diamonds and no hearts simultaneously $\}$

 $A \cup B = \{ \text{ hands with no diamonds or no hearts } \}$

 $(A \cup B)^C = \{ \text{ hands with at least 1 diamond and 1 heart simultaneously } \}$

|A| = C(39, 9) from [b] |B| = C(39, 9) from same logic in [b]

 $|A \cap B| = C(52 - 26, 9) = C(26, 9)$

 $|A \cup B| = |A| + |B| - |A \cap B|$

 $= 2 \cdot C(39, 9) - C(26, 9)$

 $= C(52, 9) - (2 \cdot C(39, 9) - C(26, 9))$

IF YOU GOT THIS ANSWER, BUT DID NOT BREAK IT

DOWN INTO ALL THE STEPS,

TAKE ALL 42 POINTS LISTED ABOVE

[e] How many hands contain 6 cards from the same suit, and 3 cards from another suit? (eg. $2 \lor$, $4 \lor$, $5 \lor$, $9 \lor$, $J \lor$, $Q \lor$, $A \diamondsuit$, $5 \diamondsuit$, $J \diamondsuit$)

Choose a suit for the 6-of-a-suit

Choose 6 cards of that suit

Choose a different suit for the 3-of-a-suit

Choose 3 cards of that suit

3 ways C(13, 3) ways

Total = $4 \cdot C(13, 6) \cdot 3 \cdot C(13, 3)$ hands

[f]How many hands contain 3 cards from each of 3 suits? (eg. $2 \checkmark$, $4 \checkmark$, $5 \checkmark$, $4 \checkmark$, $9 \checkmark$, $Q \checkmark$, $A \checkmark$, $5 \checkmark$, $J \checkmark$)

Choose 3 suits

Choose 3 cards for the (alphabetically) first suit $\int C(13, 3)$ ways

Choose 3 cards for the (alphabetically) second suit (C(13, 3)) ways Choose 3 cards for the (alphabetically) third suit C(13, 3) ways

C(4,3) ways

Total = $C(4, 3) \cdot C(13, 3) \cdot C(13, 3) \cdot C(13, 3)$ hands